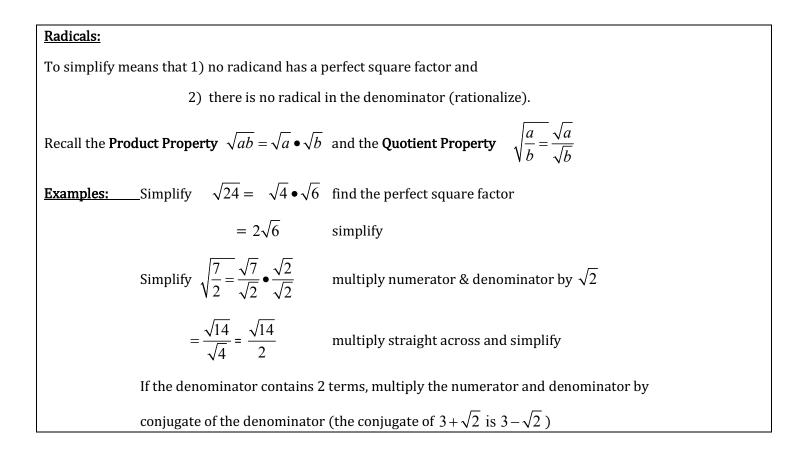
Glenbard East High School Summer Review Packet

For Students entering PRE-CALCULUS

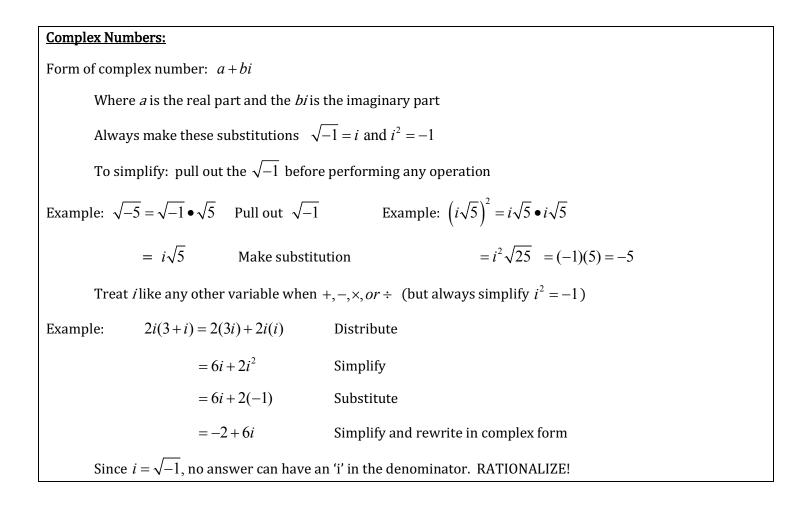
Name:


- 1. This packet is to be handed in to your Pre-Calculus teacher on the first day of the school year.
- 2. All work must be shown in the packet OR on a separate sheet of paper attached to the packet.
- 3. Completion of this packet will be worth a grade and will be recorded first semester.
- 4. If you successfully complete Summer Bridges for Pre-Calculus, you may be exempt from completion of this packet. *Have your Summer Bridges teacher notify your Pre-Calculus teacher upon successful completion of Bridges.*
- 5. Answers to odd-numbered problems have been provided.

My signature below indicates that I have received the Pre-Calculus Summer Review Packet.

(Student Signature)

(Date)


Simplify each of the following.

1. $\sqrt{32}$ 2. $\sqrt{(2x)^8}$ 3. $\sqrt[3]{-64}$ 4. $\sqrt{49m^2n^8}$

5.
$$\sqrt{\frac{11}{9}}$$
 6. $\sqrt{60} \bullet \sqrt{105}$ 7. $(\sqrt{5} - \sqrt{6})(\sqrt{5} + \sqrt{2})$

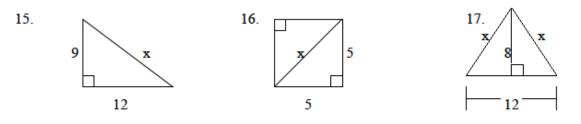
Rationalize.

8.
$$\frac{1}{\sqrt{2}}$$
 9a. $\frac{2}{\sqrt{3}}$ 10a. $\frac{3}{2-\sqrt{5}}$

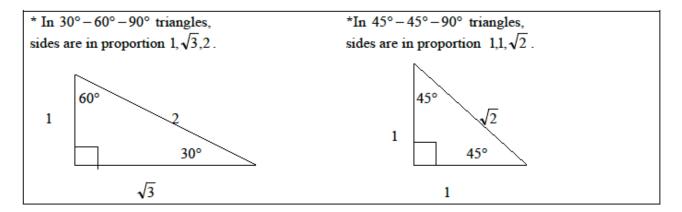
Simplify.

9b. $\sqrt{-49}$ 10b. $6\sqrt{-12}$ 11. -6(2-8i)+3(5+7i)

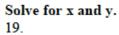
12.
$$(3-4i)^2$$
 13. $(6-4i)(6+4i)$

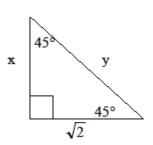

Rationalize.

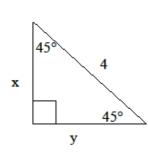
14. $\frac{1+6i}{5i}$

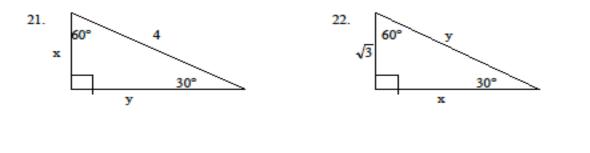

Geometry:

Pythagorean Theorem (right triangles): $a^2 + b^2 = c^2$


Find the value of x.




18. A square has perimeter 12 cm. Find the length of the diagonal.



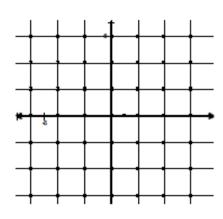
20.

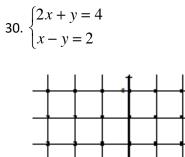
Equations of Lines:		
Slope-intercept form: $y = mx + b$	Vertical line: $x = c$	(slope is undefined)
Point-slope form: $y - y_1 = m(x - x_1)$	Horizontal line: $y = c$	(slope is zero)
Standard Form: $Ax + By = C$	Slope: $m = \frac{y_2 - y_1}{x_2 - x_1}$	

23. State the slope and y-intercept of the linear equation: 5x - 4y = 8

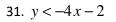
24. Find the x-intercept and y-intercept of the equation: 2x - y = 5

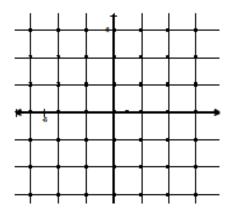
25. Write the equation in standard form: y = 7x - 5

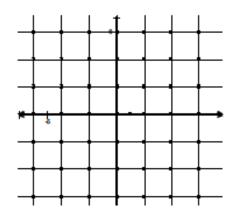

Write the equation of the line in slope-intercept form with the following conditions:

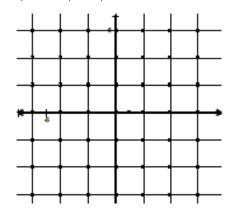

- 26. slope = -5 and passes through the point (-3, -8)
- 27. passes through the points (4, 3) and (7, -2)

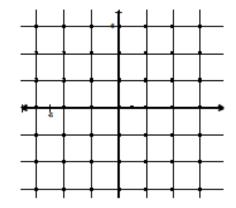

28. x-intercept = 3 and y-intercept = 2


<u>Graphing:</u> Graph each function, inequality, and/or system.


29.
$$3x - 4y = 12$$






33. y > |x| - 1

32. y + 2 = |x + 1|

34.
$$y + 4 = (x - 1)^2$$

Systems of Equations:

$$\begin{cases} 3x + y = 6 \\ 2x - 2y = 4 \end{cases}$$

$\left(2x-2y-4\right)$			
Substitution:		Elimination:	
Solve 1 equation for 1	variable	Find opposite	coefficients for 1 variable
Rearrange.		Multiply equa	tion(s) by constant(s).
Plug into 2 nd equation	l.	Add equations	s together (lose 1 variable)
Solve for the other va	riable.	Solve for varia	able.
Then plug answer back into an original equation to solve for the 2^{nd} variable.			
y = 6 - 3x	Solve 1^{st} equation for y	6x + 2y = 12	Multiply 1 st equation by 2
2x-2(6-3x)=4	Plug into 2^{nd} equation	2x - 2y = 4	coefficients of y are opposite
2x - 12 + 6x = 4	Distribute	8x = 16	Add
8x = 16 and $x = 2$	Simplify	<i>x</i> = 2	Simplify.
Plug x=2 back into the original equation $\begin{cases} 6+y=6\\ y=0 \end{cases}$			

Solve each system of equations, using any method.

$$35. \begin{cases} 2x + y = 4\\ 3x + 2y = 1 \end{cases}$$

$$36. \begin{cases} 2x + y = 4\\ 3x - y = 14 \end{cases}$$

37.
$$\begin{cases} 2w - 5z = 13\\ 6w + 3z = 10 \end{cases}$$

Exponents:

Recall the following rules of exponents:

1.	$a^1 = a$	Any number raised to the power of one equals itself.	
2.	$1^{a} = 1$	One raised to any power is one.	
3.	$a^{0} = 1$	Any nonzero number raised to the power of zero is one.	
4.	$a^m \cdot a^n = a^{m+n}$	When multiplying two powers that have the same base, add the exponents.	
5.	$\frac{a^m}{a^n} = a^{m-n}$	a^{m-n} When dividing two powers with the same base, subtract the exponents.	
6.	$(a^m)^n = a^{mn}$	When a power is raised to another power, multiply the exponents.	
7.	$a^{-n} = \frac{1}{a^n}$ and	$\frac{1}{a^{-n}} = a^n$ Any nonzero number raised to a negative power equals its reciprocal raised	
		to the opposite positive power.	

Express each of the following in simplest form. Answers should not have any negative exponents.

38.
$$5a^{0}$$

39. $\frac{3c}{c^{-1}}$
40. $\frac{2ef^{-1}}{e^{-1}}$
41. $\frac{(n^{3}p^{-1})^{2}}{(np)^{-2}}$
Simplify.
42. $3m^{2} \cdot 2m$
43. $(a^{3})^{2}$
44. $(-b^{3}c^{4})^{5}$
45. $4m(3a^{2}m)$

Polynomials:

To add/subtract polynomials, combine like terms.

EX:	8x - 3y + 6 - (6y + 4x - 9)	Distribute the negative through the parantheses.
	=8x-3y+6-6y-4x+9	Combine like terms with similar variables.
	= 8x - 4x - 3y - 6y + 6 + 9	
	=4x-9y+15	

Simplify.

46. $3x^3 + 9 + 7x^2 - x^3$ 47. 7m - 6 - (2m + 5)

To m	ultiply two binomials, use FOIL.	
EX:	(3x-2)(x+4)	Multiply the first, outer, inner, and last terms.
	$=3x^{2}+12x-2x-8$	Combine like terms together.
	$=3x^{2}+10x-8$	

Multiply.

48. (3a+1)(a-2)

49. (s+3)(s-3)

50. $(c-5)^2$

51. (5x+7y)(5x-7y)

Factoring:

Follow these steps in order to factor polynomials.

STEP 1: Look for a GCF in ALL of the terms.

a) If you have one (other than 1) factor it out.

b) If you don't have one move on to STEP 2

STEP 2: How many terms does the polynomial have?

2 Terms a) is it the difference of two squares? $a^2 - b^2 = (a+b)(a-b)$

EX: $x^2 - 25 = (x+5)(x-5)$

b) Is it the sum or difference of two cubes?
$$\frac{a^3 - b^3 = (a - b)(a^2 + ab + b^2)}{a^3 + b^3 = (a + b)(a^2 - ab + b^2)}$$

EX:
$$\frac{m^3 + 64 = (m+4)(m^2 - 4m + 16)}{p^3 - 125 = (p-5)(p^2 + 5p + 25)}$$

3 Terms

EX:

$x^{2} + bx + c = (x +)(x +)$	$x^2 + 7x + 12 = (x+3)(x+4)$
$x^{2}-bx-c = (x-)(x-)$	$x^2 - 5x + 4 = (x - 1)(x - 4)$
$x^{2} + bx - c = (x -)(x +)$	$x^2 + 6x - 16 = (x - 2)(x + 8)$
$x^{2}-bx-c = (x-)(x+)$	$x^2 - 2x - 24 = (x - 6)(x + 4)$

- 4 Terms---Factor by Grouping
- a) Pair up first two terms and last two terms.
- b) Factor out GCF of each pair of numbers.
- c) Factor out front parentheses that the terms have in common.
- d) Put leftover terms in parentheses.

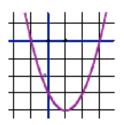
$$Ex: x^{3} + 3x^{2} + 9x + 27 = (x^{3} + 3x^{2}) + (9x + 27)$$
$$= x^{2}(x+3) + 9(x+3)$$
$$= (x+3)(x^{2}+9)$$

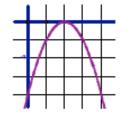
Factor completely.

52. $z^2 + 4z - 12$	53. $6-5x-x^2$	54. $2k^2 + 2k - 60$
101^4 151 ²	$5 < 0^{2} \cdot 20 \cdot 25$	\mathbf{r}
55. $-10b^4 - 15b^2$	56. $9c^2 + 30c + 25$	57. $9n^2 - 4$

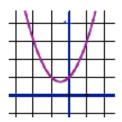
To solve quadratic equations, try to factor first and set each factor	equal to zero. Solve for your variable. If the
quadratic does NOT factor, use the quadratic formula.	

EX:	$x^2 - 4x = 21$	Set equal to zero FIRST.
	$x^2 - 4x - 21 = 0$	Now factor.
	(x+3)(x-7) = 0	Set each factor equal to zero.
	x+3=0 x-7=0	Solve for each x.
	$x = -3 \qquad x = 7$	


Solve each equation.


Discriminant: The number under the radical in the quadratic formula $(b^2 - 4ac)$ can tell you what kind of roots you will have.

If $b^2 - 4ac > 0$ you will have TWO real roots


If $b^2 - 4ac = 0$ you will have ONE real root (touches axis once)

(touches the x-axis twice)

If $b^2 - 4ac < 0$ you will have TWO imaginary roots. (Function does not cross the x-axis)

QUADRATIC FORMULA—allows you to solve any quadratic for all its real and imaginary roots.

 $5x^2 - 2x + 4 = 0 \ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

EX: In the equation $x^2 + 2x + 3 = 0$, find the value of the discriminant, describe the nature of the roots, then solve. $x^2 + 2x + 3 = 0$ Determine the values of a, b, and c. a = 1 b = 2 c = 3 Find the discriminant. $D = 2^2 - 4 \cdot 1 \cdot 3$ D = 4 - 12 D = -8 There are two imaginary roots. Solve: $x = \frac{-2 \pm \sqrt{-8}}{2}$ $x = \frac{-2 \pm 2i\sqrt{2}}{2}$ $x = -1 \pm i\sqrt{2}$

Find the value of the discriminant, describe the nature of the roots, then solve each quadratic. Use EXACT values.

63. $x^2 - 9x + 14 = 0$ 64. $5x^2 - 2x + 4 = 0$

Discriminant =
Type of Roots:
Exact Value of Roots:

<u>Synthetic Division</u>—can ONLY be used when dividing a polynomial by a linear polynomial.

EX: $\frac{2x^3 + 3x^2 - 6x + 10}{x + 3}$	
Long Division	Synthetic Division
$\frac{2x^3 + 3x^2 - 6x + 10}{x + 3}$	$\frac{2x^3 + 3x^2 - 6x + 10}{x + 3}$
$ \begin{array}{r} 2x^{2} - 3x + 3 + \frac{1}{x + 3} \\ x + 3 \overline{\smash{\big)}} 2x^{3} + 3x^{2} - 6x + 10 \\ (-)(2x^{3} + 6x^{2}) \end{array} $	$\frac{2x^3 + 3x^2 - 6x + 10}{x + 3}$ -3 2 3 -6 10
$-3x^2-6x$	-6 9 -9
$(-)\left(-3x^2-9x\right)$	2 -3 3 1
3x + 10	$= 2x - 3x + 3 + \frac{1}{x + 3}$
(-) (3x+9)	
1	

Divide each polynomial using long division OR synthetic division.

65.
$$\frac{c^3 - 3c^2 + 18c - 16}{c^2 + 3c - 2}$$
66.
$$\frac{x^4 - 2x^2 - x + 2}{x + 2}$$

To evaluate a function for the given value, simply plug the value into the function for x.

Evaluate each function for the given value.

67.
$$f(x) = x^2 - 6x + 2$$
 68. $g(x) = 6x - 7$
 69. $f(x) = 3x^2 - 4$
 $f(3) = ___$
 $g(x+h) = ___$
 $5[f(x+2)] = ___$

Composition and Inverses of Functions:

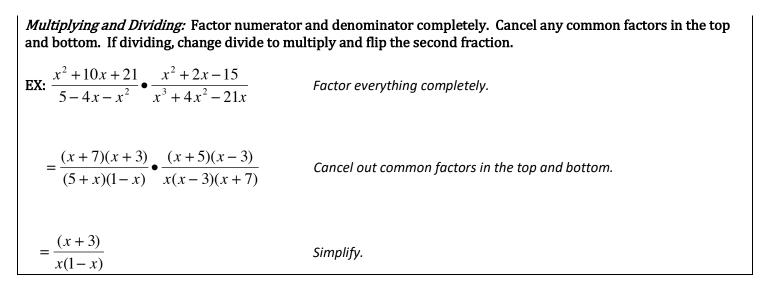
Recall: $(f \ g)(x) = f(g(x)) \operatorname{OR} f[g(x)]$ read "**f** of **g** of **x**" means to plug the inside function in for x in the outside function.

Example: Given $f(x) = 2x^2 + 1$ and g(x) = x - 4 find f(g(x)).

f(g(x)) = f(x-4)= 2(x-4)²+1 = 2(x²-8x+16)+1 = 2x²-16x+32+1 f(g(x)) = 2x²-16x+33

Suppose f(x) = 2x, g(x) = 3x - 2, and $h(x) = x^2 - 4$. Find the following:

70. f[g(2)] =_____ 71. f[g(x)] =_____


72. f[h(3)] =_____

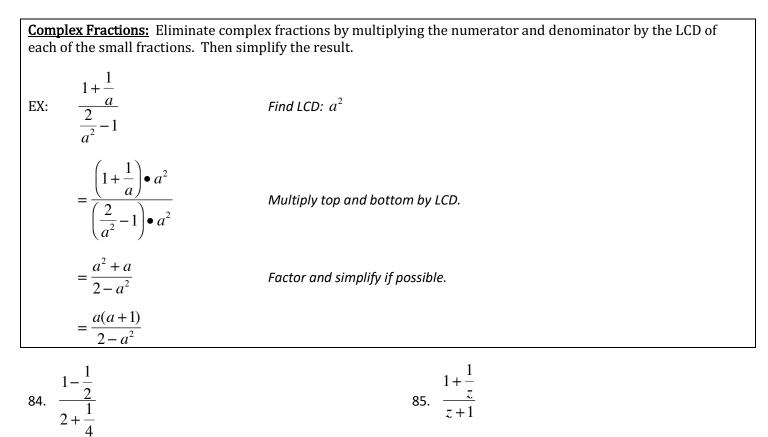
73. g[f(x)] =_____

Example:	$f(x) = \sqrt[3]{x+1}$	Rewrite $f(x)$ as y
	$y = \sqrt[3]{x+1}$	Switch x and y
	$x = \sqrt[3]{y+1}$	Solve for your new <i>y</i>
	$\left(x\right)^{3} = \left(\sqrt[3]{y+1}\right)^{3}$	Cube both sides
	$x^3 = y + 1$	Simplify
	$y = x^3 - 1$	Solve for <i>y</i>
	$f^{-1}(x) = x^3 - 1$	Rewrite in inverse notation
Find the inverse, $f^{-1}(x)$, if possible.		

74. f(x) = 5x + 2

75.
$$f(x) = \frac{1}{2}x - \frac{1}{3}$$

76.
$$\frac{5z^3 + z^2 - z}{3z}$$
 77. $\frac{m^2 - 25}{m^2 + 5m}$ **78.** $\frac{10r^5}{21s^2} \bullet \frac{3s}{5r^3}$


70	$a^2 - 5a + 6$	3a + 12	6d-9, $6-1$	$13d + 6d^2$
79.	a+4	a-2	80. $\frac{1}{5d+1} - \frac{1}{15d}$	$\frac{1}{2} - 7d - 2$

Addition and Subtraction

First find the least common denominator. Write each fraction with that LCD. Add/subtract numerators as indicated and leave the denominators as they are.

$\frac{3x+1}{x(x+2)} + \frac{5x-4}{2(x+2)}$ Find LCD, which is $(2x)(x+2)$ $\frac{2(3x+1)}{2x(x+2)} + \frac{x(5x-4)}{2x(x+2)}$ Rewrite each fraction with the LCD in the denominator. $\frac{6x+2+5x^2-4x}{2x(x+2)}$ Write as one fraction. $\frac{5x^2+2x+2}{2x(x+2)}$ Combine like terms.	EX:	$\frac{3x+1}{x^2+2x} + \frac{5x-4}{2x+4}$	Factor denominator completely.
$\frac{6x+2+5x^2-4x}{2x(x+2)}$ Write as one fraction. $\frac{5x^2+2x+2}{2x(x+2)}$ Combine like terms		$\frac{3x+1}{x(x+2)} + \frac{5x-4}{2(x+2)}$	Find LCD, which is $(2x)(x+2)$
$\frac{2x(x+2)}{5x^2+2x+2}$ Write as one fraction. $\frac{5x^2+2x+2}{5x^2+2x+2}$ Combine like terms		$\frac{2(3x+1)}{2x(x+2)} + \frac{x(5x-4)}{2x(x+2)}$	Rewrite each fraction with the LCD in the denominator.
Combine like terms			Write as one fraction.
2x(x+2)		$\frac{5x^2 + 2x + 2}{2x(x+2)}$	Combine like terms.

2x x	b-a + a+b	$2-a^2 + 3a+4$
81. $\frac{-1}{5} - \frac{1}{3}$	82. $\frac{a^2b}{a^2b} + \frac{ab^2}{ab^2}$	83. $\frac{1}{a^2 + a} + \frac{1}{3a + 3}$

87.
$$\frac{2 + \frac{1}{x} - \frac{1}{x^2}}{1 + \frac{4}{x} + \frac{3}{x^2}}$$

Solving Rational Equations:

Multiply each term by the LCD of all the fractions. This should eliminate all of our fractions. Then solve the equation as usual.

$$\frac{5}{x+2} + \frac{1}{x} = \frac{5}{x}$$
Find LCD first $x(x+2)$

$$x(x+2)\frac{5}{x+2} + x(x+2)\frac{1}{x} = \frac{5}{x}x(x+2)$$
Multiply each term by the LCD.
$$5x + 1(x+2) = 5(x+2)$$
Simplify and solve.
$$5x + x + 2 = 5x + 10$$

$$6x + 2 = 5x + 10$$

$$x = 8 \quad \leftarrow \text{ Check your answer! Sometimes they do not check!}$$
Check:
$$\frac{5}{8+2} + \frac{1}{8} = \frac{5}{8}$$

$$\frac{5}{10} + \frac{1}{8} = \frac{5}{8}$$

Solve each equation. Check your solutions.

12 3 3	x + 10 = 4	5 x
$88. \ \frac{12}{x} + \frac{3}{4} = \frac{3}{2}$	89. $\frac{x^2 + 2z}{x^2 - 2} = \frac{1}{x}$	90. $\frac{5}{x-5} = \frac{x}{x-5} - 1$
x 4 \angle	x = 2 - x	x - 3 $x - 3$

Summer Review Packet for Pre-Calculus

Solutions to Odd Exercises

1.
$$4\sqrt{2}$$

3. -4
5. $\frac{\sqrt{11}}{3}$
7. $5 + \sqrt{10} - \sqrt{30} - 2\sqrt{3}$
9a. $\frac{2\sqrt{3}}{3}$
9b. $7i$
11. $3 + 69i$
13. 52
15. 15
17. 10
19. $\sqrt{2}$
21. $x=2$ $y = 2\sqrt{3}$
23. $m = \frac{5}{4}$ $b = -2$
25. $7x - y = 5$
27. $y = -\frac{5}{3}x + \frac{29}{3}$
29. $31, 33$ graphs
35. $(7, -10)$
37. $\left(\frac{89}{36}, -\frac{29}{18}\right)$
39. $3c^2$
41. n^8
43. a^6
45. $12a^2m^2$
47. $5m - 11$
49. $s^2 - 9$
51. $25x^2 - 49y^2$
53. $-(x + 6)(x - 1)$
55. $-5b^2(2b^2 + 3)$
57. $(3n - 2)(3n + 2)$
59. $2(m + s)(n - t)$
61. $x = 5$
63. $25; 2 real; 7 and 2$
65. $(c - 6) + \frac{38c - 28}{c^2 + 3c - 2}$
67. -7
69. $15x^2 + 60x + 40$
71. $6x - 4$
73. $6x - 2$
75. $f^{-1}(x) = 2x + \frac{2}{3}$
77. $\frac{m-5}{m}$
79. $3(a - 3)$
81. $\frac{x}{15}$
83. $\frac{4a + 6}{3a(a + 1)}$
85. $\frac{1}{z}$
87. $\frac{2x - 1}{x + 3}$
89. $x = 4, -\frac{2}{3}$